pytorch反卷积实现细节(PyTorch可视化理解卷积神经网络)
pytorch反卷积实现细节(PyTorch可视化理解卷积神经网络)
2024-09-27 08:38:38  作者:武林天骄  网址:https://m.xinb2b.cn/life/lva140402.html

如今,机器已经能够在理解、识别图像中的特征和对象等领域实现99%级别的准确率。生活中,我们每天都会运用到这一点,比如,智能手机拍照的时候能够识别脸部、在类似于谷歌搜图中搜索特定照片、从条形码扫描文本或扫描书籍等。造就机器能够获得在这些视觉方面取得优异性能可能是源于一种特定类型的神经网络——卷积神经网络(CNN)。如果你是一个深度学习爱好者,你可能早已听说过这种神经网络,并且可能已经使用一些深度学习框架比如caffe、TensorFlow、pytorch实现了一些图像分类器。然而,这仍然存在一个问题:数据是如何在人工神经网络传送以及计算机是如何从中学习的。为了从头开始获得清晰的视角,本文将通过对每一层进行可视化以深入理解卷积神经网络。


卷积神经网络

在学习卷积神经网络之前,首先要了解神经网络的工作原理。神经网络是模仿人类大脑来解决复杂问题并在给定数据中找到模式的一种方法。在过去几年中,这些神经网络算法已经超越了许多传统的机器学习和计算机视觉算法。“神经网络”是由几层或多层组成,不同层中具有多个神经元。每个神经网络都有一个输入和输出层,根据问题的复杂性增加隐藏层的个数。一旦将数据送入网络中,神经元就会学习并进行模式识别。一旦神经网络模型被训练好后,模型就能够预测测试数据。

另一方面,CNN是一种特殊类型的神经网络,它在图像领域中表现得非常好。该网络是由YanLeCunn在1998年提出的,被应用于数字手写体识别任务中。其它应用领域包括语音识别、图像分割和文本处理等。在CNN被发明之前,多层感知机(MLP)被用于构建图像分类器。图像分类任务是指从多波段(彩色、黑白)光栅图像中提取信息类的任务。MLP需要更多的时间和空间来查找图片中的信息,因为每个输入元素都与下一层中的每个神经元连接。而CNN通过使用称为局部连接的概念避免这些,将每个神经元连接到输入矩阵的局部区域。这通过允许网络的不同部分专门处理诸如纹理或重复模式的高级特征来最小化参数的数量。下面通过比较说明上述这一点。

比较MLP和CNN

因为输入图像的大小为28x28=784(MNIST数据集),MLP的输入层神经元总数将为784。网络预测给定输入图像中的数字,输出数字范围是0-9。在输出层,一般返回的是类别分数,比如说给定输入是数字“3”的图像,那么在输出层中,相应的神经元“3”与其它神经元相比具有更高的类别分数。这里又会出现一个问题,模型需要包含多少个隐藏层,每层应该包含多少神经元?这些都是需要人为设置的,下面是一个构建MLP模型的例子:

Num_classes = 10Model = Sequntial()Model.add(Dense(512, activation=’relu’, input_shape=(784, )))Model.add(Dropout(0.2))Model.add(Dense(512, activation=’relu’))Model.add(Dropout(0.2))Model.add(Dense(num_classes, activation=’softmax’))

上面的代码片段是使用Keras框架实现(暂时忽略语法错误),该代码表明第一个隐藏层中有512个神经元,连接到维度为784的输入层。隐藏层后面加一个dropout层,丢弃比例设置为0.2,该操作在一定程度上克服过拟合的问题。之后再次添加第二个隐藏层,也具有512谷歌神经元,然后再添加一个dropout层。最后,使用包含10个类的输出层完成模型构建。其输出的向量中具有最大值的该类将是模型的预测结果。

这种多层感知器的一个缺点是层与层之间完全连接,这导致模型需要花费更多的训练时间和参数空间。并且,MLP只接受向量作为输入。


卷积使用稀疏连接的层,并且其输入可以是矩阵,优于MLP。输入特征连接到局部编码节点。在MLP中,每个节点都有能力影响整个网络。而CNN将图像分解为区域(像素的小局部区域),每个隐藏节点与输出层相关,输出层将接收的数据进行组合以查找相应的模式。


计算机如何查看输入的图像?

看着图片并解释其含义,这对于人类来说很简单的一件事情。我们生活在世界上,我们使用自己的主要感觉器官(即眼睛)拍摄环境快照,然后将其传递到视网膜。这一切看起来都很有趣。现在让我们想象一台计算机也在做同样的事情。

在计算机中,使用一组位于0到255范围内的像素值来解释图像。计算机查看这些像素值并理解它们。乍一看,它并不知道图像中有什么物体,也不知道其颜色。它只能识别出像素值,图像对于计算机来说就相当于一组像素值。之后,通过分析像素值,它会慢慢了解图像是灰度图还是彩色图。灰度图只有一个通道,因为每个像素代表一种颜色的强度。0表示黑色,255表示白色,二者之间的值表明其它的不同等级的灰灰色。彩色图像有三个通道,红色、绿色和蓝色,它们分别代表3种颜色(三维矩阵)的强度,当三者的值同时变化时,它会产生大量颜色,类似于一个调色板。之后,计算机识别图像中物体的曲线和轮廓。。

下面使用PyTorch加载数据集并在图像上应用过滤器:

# Load the librariesimport torchimport numpy as npfrom torchvision import datasetsimport torchvision.transforms as transforms# Set the parametersnum_workers = 0batch_size = 20# Converting the Images to tensors using Transformstransform = transforms.ToTensor()train_data = datasets.MNIST(root='data', train=True, download=True, transform=transform)test_data = datasets.MNIST(root='data', train=False, download=True, transform=transform)# Loading the Datatrain_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=num_workers)test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers)import matplotlib.pyplot as plt%matplotlib inline dataiter = iter(train_loader)images, labels = dataiter.next()images = images.numpy()# Peeking into datasetfig = plt.figure(figsize=(25, 4))for image in np.arange(20): ax = fig.add_subplot(2, 20/2, image 1, xticks=[], yticks=[]) ax.imshow(np.squeeze(images[image]), cmap='gray') ax.set_title(str(labels[image].item()))


下面看看如何将单个图像输入神经网络中:

img = np.squeeze(images[7])fig = plt.figure(figsize = (12,12)) ax = fig.add_subplot(111)ax.imshow(img, cmap='gray')width, height = img.shapethresh = img.max()/2.5for x in range(width): for y in range(height): val = round(img[x][y],2) if img[x][y] !=0 else 0 ax.annotate(str(val), xy=(y,x), color='white' if img[x][y]<thresh else 'black')

上述代码将数字'3'图像分解为像素。在一组手写数字中,随机选择“3”。并且将实际像素值(0-255 )标准化,并将它们限制在0到1的范围内。归一化的操作能够加快模型训练收敛速度。

构建过滤器

过滤器,顾名思义,就是过滤信息。在使用CNN处理图像时,过滤像素信息。为什么需要过滤呢,计算机应该经历理解图像的学习过程,这与孩子学习过程非常相似,但学习时间会少的多。简而言之,它通过从头学习,然后从输入层传到输出层。因此,网络必须首先知道图像中的所有原始部分,即边缘、轮廓和其它低级特征。检测到这些低级特征之后,传递给后面更深的隐藏层,提取更高级、更抽象的特征。过滤器提供了一种提取用户需要的信息的方式,而不是盲目地传递数据,因为计算机不会理解图像的结构。在初始情况下,可以通过考虑特定过滤器来提取低级特征,这里的滤波器也是一组像素值,类似于图像。可以理解为连接卷积神经网络中的权重。这些权重或滤波器与输入相乘以得到中间图像,描绘了计算机对图像的部分理解。之后,这些中间层输出将与多个过滤器相乘以扩展其视图。然后提取到一些抽象的信息,比如人脸等。

就“过滤”而言,我们有很多类型的过滤器。比如模糊滤镜、锐化滤镜、变亮、变暗、边缘检测等滤镜。

下面用一些代码片段来理解过滤器的特征:

Import matplotlib.pyplot as pltImport matplotib.image as mpimgImport cv2Import numpy as npImage = mpimg.imread(‘dog.jpg’)Plt.imshow(image)


# 转换为灰度图gray = cv2.cvtColor(image, cv2.COLOR_RB2GRAY)# 定义sobel过滤器sobel = np.array([-1, -2, -1],[0, 0, 0],[1, 2, 1]))# 应用sobel过滤器Filtered_image = cv2.filter2D(gray, -1, sobel_y)# 画图Plt.imshow(filtered_image, cmp=’gray’)


以上是应用sobel边缘检测滤镜后图像的样子, 可以看到检测出轮廓信息。

完整的CNN结构

到目前为止,已经看到了如何使用滤镜从图像中提取特征。现在要完成整个卷积神经网络,cnn使用的层是:

1.卷积层(Convolutional layer)2.池层(Pooling layer)3.全连接层(fully connected layer)

典型的cnn网络结构是由上述三类层构成:


下面让我们看看每个图层起到的的作用:

* 卷积层(CONV)——使用过滤器执行卷积操作。因为它扫描输入图像的尺寸。它的超参数包括滤波器大小,可以是2x2、3x3、4x4、5x5(或其它)和步长S。结果输出O称为特征映射或激活映射,具有使用输入层计算的所有特征和过滤器。下面描绘了应用卷积的工作过程:


卷积运算

池化层(POOL)——用于特征的下采样,通常在卷积层之后应用。池化处理方式有多种类型,常见的是最大池化(max pooling)和平均池化(ave pooling),分别采用特征的最大值和平均值。下面描述了池化的工作过程:



 全连接层(FC)——在展开的特征上进行操作,其中每个输入连接到所有的神经元,通常在网络末端用于将隐藏层连接到输出层,下图展示全连接层的工作过程:


在PyTorch中可视化CNN

在了解了CNN网络的全部构件后,现在让我们使用PyTorch框架实现CNN。

步骤1:加载输入图像:

import cv2import matplotlib.pyplot as plt%matplotlib inlineimg_path = 'dog.jpg'bgr_img = cv2.imread(img_path)gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)# Normalisegray_img = gray_img.astype("float32")/255plt.imshow(gray_img, cmap='gray')plt.show()


步骤2:可视化过滤器

对过滤器进行可视化,以更好地了解将使用哪些过滤器:

import numpy as npfilter_vals = np.array([ [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1], [-1, -1, 1, 1]])print('Filter shape: ', filter_vals.shape)# Defining the Filtersfilter_1 = filter_valsfilter_2 = -filter_1filter_3 = filter_1.Tfilter_4 = -filter_3filters = np.array([filter_1, filter_2, filter_3, filter_4])# Check the Filtersfig = plt.figure(figsize=(10, 5))for i in range(4): ax = fig.add_subplot(1, 4, i 1, xticks=[], yticks=[]) ax.imshow(filters[i], cmap='gray') ax.set_title('Filter %s' % str(i 1)) width, height = filters[i].shape for x in range(width): for y in range(height): ax.annotate(str(filters[i][x][y]), xy=(y,x), color='white' if filters[i][x][y]<0 else 'black')

步骤3:定义CNN模型

本文构建的CNN模型具有卷积层和最大池层,并且使用上述过滤器初始化权重:

import torchimport torch.nn as nnimport torch.nn.functional as F class Net(nn.Module): def __init__(self, weight): super(Net, self).__init__() # initializes the weights of the convolutional layer to be the weights of the 4 defined filters k_height, k_width = weight.shape[2:] # assumes there are 4 grayscale filters self.conv = nn.Conv2d(1, 4, kernel_size=(k_height, k_width), bias=False) # initializes the weights of the convolutional layer self.conv.weight = torch.nn.Parameter(weight) # define a pooling layer self.pool = nn.MaxPool2d(2, 2) def forward(self, x): # calculates the output of a convolutional layer # pre- and post-activation conv_x = self.conv(x) activated_x = F.relu(conv_x) # applies pooling layer pooled_x = self.pool(activated_x) # returns all layers return conv_x, activated_x, pooled_x # instantiate the model and set the weightsweight = torch.from_numpy(filters).unsqueeze(1).type(torch.FloatTensor)model = Net(weight)# print out the layer in the networkprint(model)

Net(

(conv): Conv2d(1, 4, kernel_size=(4, 4), stride=(1, 1), bias=False)

(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

)

步骤4:可视化过滤器

快速浏览一下所使用的过滤器

def viz_layer(layer, n_filters= 4): fig = plt.figure(figsize=(20, 20)) for i in range(n_filters): ax = fig.add_subplot(1, n_filters, i 1) ax.imshow(np.squeeze(layer[0,i].data.numpy()), cmap='gray') ax.set_title('Output %s' % str(i 1))fig = plt.figure(figsize=(12, 6))fig.subplots_adjust(left=0, right=1.5, bottom=0.8, top=1, hspace=0.05, wspace=0.05)for i in range(4): ax = fig.add_subplot(1, 4, i 1, xticks=[], yticks=[]) ax.imshow(filters[i], cmap='gray') ax.set_title('Filter %s' % str(i 1))gray_img_tensor = torch.from_numpy(gray_img).unsqueeze(0).unsqueeze(1)


步骤5:每层过滤器的输出

在卷积层和池化层输出的图像如下所示:

卷积层:


池化层:


可以看到不同层结构得到的效果会有所差别,正是由于不同层提取到的特征不同,在输出层集合到的特征才能很好地抽象出图像信息。

作者信息

Vihar Kurama,机器学习

本文由阿里云云栖社区组织翻译。

文章原标题《Understanding Convolutional Neural Networks through Visualizations in PyTorch》,译者:海棠,审校:Uncle_LLD。

  • 王者荣耀荣耀战区开启不了(王者荣耀荣耀战区为什么尚未开启)
  • 2024-09-27王者荣耀荣耀战区为什么尚未开启王者荣耀荣耀战区已经灰度测试将近一个星期了,好多玩家点击战区显示的还是“荣耀战区尚未开启敬请期待”,但有的玩家又反应同区玩家可以开启战区,只有自己进不去荣耀战区为什么尚未开启呢?荣耀战区到底怎么开启?。
  • 技嘉b550m aorus 搭配什么cpu(APU应该配什么主板)
  • 2024-09-27APU应该配什么主板雪雕是技嘉今年推出的新系列,这个系列除了采用白颜色装甲外,用料在中端入门主板中十分出彩,技嘉雪雕B550M主板就是其中之一这款主板用料十分扎实,搭配近期刚刚推出的锐龙5000GAPU非常合适,两者都是。
  • 故宫里的乌鸦是怎么回事 故宫中的乌鸦为什么那么多
  • 2024-09-27故宫里的乌鸦是怎么回事 故宫中的乌鸦为什么那么多在我们现在的观念中,总觉得乌鸦是不祥的象征,因为它的颜色很深,传说是死亡和厄运的代表,但在故宫的上方为什么总有乌鸦?尤其在近黄昏的时候,更是有很多乌鸦聚集,这是什么原因呢?难道真的是不祥之兆吗?其实不。
  • 哪些水果核能种成盆栽(两种水果吃完籽儿留下)
  • 2024-09-27两种水果吃完籽儿留下花草植物让我们的生活环境变得更美,舒适怡人,如果阳台比较大的,甚至还有露台屋顶小花园的,小雅觉得别浪费了空间,一定要合理利用起来,不仅可以种一些漂亮的盆栽绿植,还可以种一些盆栽水果呢,有一些水果也可以。
  • 一生国内必去50个最美的地方(国内最美的55个旅行地)
  • 2024-09-27国内最美的55个旅行地1、西安——千年古都2、南京——六朝金粉地,金陵帝王州3、北京——举世无双的皇家建筑4、苏州——苏州园林甲天下5、大理——风花雪月地,山光水色城6、澳门——东方的“拉斯维加斯”【文化名镇】7、丽江——。
  • 国家允许水泥放洗衣粉吗(为什么农村建房和水泥要加白糖)
  • 2024-09-27为什么农村建房和水泥要加白糖农村自建房,往水泥里加白糖、洗衣粉,你见过吗?最近新型房屋收到好几个私信都说,自家盖房时,看到工人往水泥里加别的东西,有的是白糖,有的是洗衣粉、洗洁精,工头却说大家都是这么干的,没什么问题那么事实真的。
  • 患者脱管原因分析及措施(当心这类操作不当引发的脱管)
  • 2024-09-27当心这类操作不当引发的脱管临床案例前几天,到呼吸内科查房,护士长小H正在病房为5床患者重置导尿管患者家属在旁边唠唠叨叨的说:“这次的尿管才用了5天就掉了,肯定是之前膀胱冲洗的小护士,操作不当引起的,以前冲洗都在那个白色盖帽端连。
  • 产后子宫怎样恢复得快(帮助产后子宫恢复的八个妙招)
  • 2024-09-27帮助产后子宫恢复的八个妙招分娩后,子宫的恢复对新妈妈来说是一件非常重要的事情一般来讲,子宫恢复需要6周左右,完全恢复到孕前则要6-8周的时间如何能让产后子宫既能恢复到孕前的大小,又能恢复的不错?明星妈咪为新妈妈们推荐了八个帮助。
  • 朋友圈说说经典短句子霸气(微信上超洒脱霸气的个性句子)
  • 2024-09-27微信上超洒脱霸气的个性句子叁品姐姐每天分享一段爱情感悟,幸福可以很简单,审核原创美文打卡第25天,点击右上角关注“叁品姐姐的小幸福”1世界上最美好的爱情:简单开始,平淡相处,眨眼,便是一生2我已经忘了你的名字,只是我的输入法还。
  • 电影当中的世界观是怎样塑造的(人生如戏戏如人生)
  • 2024-09-27人生如戏戏如人生谈天说地,有“贝”而来光影之间,方晓冷暖大家好,我是天贝兄~电影中的套层结构是一种独特的叙事结构,它还有一个更为人所熟知的叫法“戏中戏”套层结构通常由两条叙事线索构成,一条故事线索嵌套着另一条故事线索。
  • 赵薇徐峥完整(演而优则导赵薇)
  • 2024-09-27演而优则导赵薇演而优则导,从演员到导演身份的转换中,不乏许多成功的明星比如曾经饰演《还珠格格》中小燕子的赵薇,在出演完《还珠格格》、《情深深雨蒙蒙》、《京华烟云》、《画皮》等一系列影视作品之后,终于成为大红大紫的女。