上一篇为大家介绍了《AI产品经理需要了解的概率论通识:4个概念3个问题》,本篇文章中,笔者将为你介绍AI产品经理需要了解的线性代数通识,一起来看看吧。
罗素在自传中这样写道:“我 11 岁时,我开始学习欧几里得几何学,哥哥做我的老师,这是我生活中的一件大事,就像初恋一样令人陶醉。我从来没有想象到世界上还有如此美妙的东西。”
高斯把数学置于科学之巅,希尔伯特则把数学看作“一幢出奇的美丽又和谐的大厦”。
在人们的印象中,数学与艺术很少有共同之处。数学以其卓越的智力成就被人们尊称为“科学的皇后”,
随着人类社会的发展,技术的进步,在AI时代,数学会成为最基本的学科,会成为所有算法模型的基础,而线性代数则是描述抽象状态和变化的规则。
张志华教授说过:“搞好机器学习,关键是数学,但你又不能把机器学习变成搞数学,那样就漫无边际了。”
数学浩瀚如海,神灵通天,对于绝大多数 AI 工程师来说,学习机器学习,对于其中涉及的数学知识形成理解,打牢基础,是必不可少的。
而线性代数正是这基础中的基础了,线性代数可使矩阵操作快速而简单,特别是通过GPU进行计算。而事实上,GPU的设计便是受启发自向量和线性代数。
一、什么是线性代数瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”可见线性代数的重要性。
线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。
例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。
含有 n个未知量的一次方程称为线性方程,关于变量是一次的函数称为线性函数。
线性关系问题简称线性问题,解线性方程组的问题是最简单的线性问题。
线性代数可以将各种复杂问题转化为简单、直观、高效的计算问题。
神经网络(Neural networks)将权值(weights)存放于矩阵(matrices)中,线性代数使得矩阵操作快速而简单,特别是通过 GPU 进行运算。
类似于用像素的多维数组(arrays of pixels)来表示图形图像,视频游戏通过大规模且持续的矩阵计算,带来了极具吸引力的游戏体验。GPU 是并行操作整个矩阵中的各个像素,而不是一个接一个地去处理单个像素。
线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。二、线性代数里的基本概念1. 行列式行列式这个“怪物”定义初看很奇怪,一堆逆序数什么的让人不免觉得恐惧,但其实它是有实际得不能更实际的物理意义的。
其实行列式的本质就是一句话:行列式就是线性变换的放大率!
2. 矩阵用中括号把一堆傻了吧叽的数括起来,这个东西叫做矩阵。
这可能是我们大学期间的理解,其实理解矩阵就要先了解向量,向量是关于数字或数据项的一维数组的表示。
从几何学上看,向量将潜在变化的大小和方向存储到一个点。向量 [3, -2] 表示的是左移3个单位下移2个单位。我们将具有多个维度的向量称为矩阵。
三、线性代数的应用1. 在搜索引擎中的应用当人们在使用搜索引擎时,总会对搜索结果排名靠前的网页更信任。可是,怎样判断一个网页的重要性?
一个网页获得链接越多,可信度就越高,那么它的排名就越高。这就是谷歌PageRank网页排名算法的核心思想。
但是所有的网页都是连在一起的,互相连接。而你评估必须要有一个起点,但是,用任何网页作为起点都不公平,怎么办?
谷歌的解决办法是:先同时把所有网站作为起点,也就是先假定所有的网页一样重要、排名相同。然后,进行迭代。
整个互联网就像一张大的网,每个网站就是一个节点,而每个网页的链接就是一条链接线。于是这个问题变成了一个二维矩阵相乘的问题,首先计算第一次迭代排名,然后再算出第二次迭代排名……
最终,排名会收敛,不再变化,算出了网页最终排名。简言之,网页排名的的计算主要是矩阵相乘。
2. 在机器学习中的应用在计算机视觉应用中处理图像或照片,使用的每个图像本身都是一个固定宽度和高度的表格结构,每个单元格有用于表示黑白图像的 1 个像素值或表示彩色图像的 3 个像素值。
照片也是线性代数矩阵的一种,与图像相关的操作,如裁剪、缩放、剪切等,都是使用线性代数的符号和运算来描述的。
推荐系统也有应用线性代数,例如基于你在亚马逊上的购买记录和与你类似的客户的购买记录向你推荐书籍,或根据你或与你相似的用户在 Netflix 上的观看历史向你推荐电影或电视节目。
推荐系统的开发主要涉及线性代数方法。一个简单的例子就是使用欧式距离或点积之类的距离度量来计算稀疏顾客行为向量之间的相似度。
像奇异值分解这样的矩阵分解方法在推荐系统中被广泛使用,以提取项目和用户数据的有用部分,以备查询、检索及比较。
3. 在量化投资中的应用量化投资是一个交叉复合学科,要求掌握数学、计算机编程、金融等方面的知识。
而在量化投资中广泛应用的隐马尔可夫模型(Hidden Markov Model, HMM)就可以很好的解决资本市场独立数据与独立数据的自变量与因变量之间的关系,从而给他决策判断。
四、总结在众多的数学学科中,线性代数是最为抽象的一门课,很多人学过以后一直停留在知其然不知其所以然的阶段,在机器学习等领域兴起才发现线性代数的应用无处不在。
其实各个学科直接都是相通的,抽象的思维锻炼也许是人工智能产品开发中必备思维。
作者:老张,宜信集团保险事业部智能保险产品负责人,运营军师联盟创始人之一,《运营实战手册》作者之一。
本文由 @老张 原创发布于人人都是产品经理。未经许可,禁止转载。
题图来自Unsplash,基于 CC0 协议。
ai产品经理必须懂技术吗(AI产品经理需要了解的线性代数通识)
2024-11-08 03:37:16 作者:牵着迩德手 网址:https://m.xinb2b.cn/tech/pad281980.html
- 知否原著平宁郡主装疯 知否原著一生无爱的平宁郡主
- 2024-11-08知否原著平宁郡主装疯 知否原著一生无爱的平宁郡主我是作者//人间小Q《知否》当中,最不喜欢的当属平宁郡主她的父亲是襄阳侯,当年襄阳侯护驾有功,却折损了一条腿,圣上便封了他的独女为平宁郡主,而她自小在宫里长大,极为受宠;所嫁的齐国公府,齐大人官居从三。
- 东山指的是什么山(人们常说东山再起)
- 2024-11-08人们常说东山再起中华文明,博大精深,源远流长,每一个成语背后都有一段小故事或跌宕起伏、或含蓄优美、或扣人心弦比如,成语“东山再起”,指的是再度出任要职,也比喻失势之后重新得势但“东山再起”里的“东山”到底指的是哪座山。
- 美人鱼是怎么灭绝的(还有美人鱼吗)
- 2024-11-08还有美人鱼吗美人鱼没有灭绝拯救美人鱼的工作,已经由国家的法律法规变成了许多人的行动美人鱼其实是儒艮哺乳动物俗称人鱼分布广东、广西、海南和台湾南部沿海儒艮为海生草食性兽类其分布与水温、海流以及作为主要食品的海草分布。
- 薛佳凝演过什么片(薛佳凝曾主演过的租个女友回家过年)
- 2024-11-08薛佳凝曾主演过的租个女友回家过年薛佳凝,1978年8月13日出生于黑龙江哈尔滨,中国内地女演员、歌手8岁的时候,在哈尔滨电视台主持《小天鹅》、《小雪花》等节目1995年考入上海戏剧学院1995级表演系本科读大一时,薛佳凝被黄蜀芹导演。
- baby不悔初相遇(Baby我爱你一叶情感)
- 2024-11-08Baby我爱你一叶情感#「闪光时刻」主题征文二期#叶丹(中国情诗*原南海旗兵爱燕儿)Baby,我爱你我要走向大海肩扛月亮手捧着太阳让你站在月亮上面感觉暖阳Baby,我爱你爱像月亮一样久长爱像太阳一样光芒爱像大海一样宽广Ba。
- 尿常规为什么要化验(不是只有尿常规这样简单)
- 2024-11-08不是只有尿常规这样简单经常有家长问已经化验尿了,怎么还要验尿?都是化验尿,可检查的内容不一样哦!尿蛋白/肌酐比和尿微量白蛋白/肌酐比和尿常规一样,也是检查一次性的尿液,虽然都是查尿蛋白,但方法不同,意义也不同,这两项检查对。
- 变频器为什么有密码(变频器密码大全)
- 2024-11-08变频器密码大全一、台达变频器的超级密码-B系列的:57522-H系列的:33582S1系列变频的万能密码:575222二、欧瑞变频器(也就是之前的惠丰变频器)超级密码是:18881500-G1500-P1000-G。
- 白菜拌海蜇皮的家常做法
- 2024-11-08白菜拌海蜇皮的家常做法食材:白菜心300克、海蜇皮250克、大蒜1头、白芝麻1茶匙、香菜1棵、小米辣2个、盐一茶匙、白糖1.5茶匙、米醋1茶匙、生抽少许烹饪方法:1:先来处理海蜇皮,将海蜇皮多次清洗,洗掉表面的咸味儿2:切。
- 所有的感情的遗憾都是因为思念(你是否会有缠绵恼人的情愫)
- 2024-11-08你是否会有缠绵恼人的情愫作者:陈大力我在上海定居也有快两年了吧,现在有了个非常无聊的癖好那就是,每当我打开卖房app,看到那些售价8位数普普通通的小房子时,都会马上把城市切换成一个二线,比如长沙啦,武汉啦,苏州啦,然后看看同。
- 家里的网速突然慢是什么原因(为什么你家里的网速慢)
- 2024-11-08为什么你家里的网速慢经常你在家上网时,你会发现,明明装的是50M光纤,为什么网速还是这么慢呢?原因何在?这种事几乎大部分人就会遇到那么今天我们科普一下“网速为什么慢”很必要我们一直起来看看一、你家的宽带是怎样访问互联网的。
- 开心速递为什么要停播
- 2024-11-08开心速递为什么要停播开心速递没有停播这部剧全称是叫爱回家之开心速递它每天晚上八点都会在香港TVB播放的,现在还在播,已经播出好几年了,所以开心速递没有停播。
- 单身时间长了谈恋爱会不适应吗 谈恋爱之后会有什么烦恼
- 2024-11-08单身时间长了谈恋爱会不适应吗 谈恋爱之后会有什么烦恼【单身久了,谈恋爱之后会有什么烦恼?】1.不秒回就开始怀疑爱不爱我玻璃心严重很多,每次很久没理我,或者没察觉到我哪不对,我不开心他没发现的话,内心就自己导演了一场电影了,摊手2.以前觉得卫生纸贵所以想。