我们在初中的时候学过锐角的三角函数的定义:正弦(对边比斜边)、余弦(邻边比斜边)、正切(对边比邻边)初中的三角函数是对于锐角来说的,我们首先确定一个直角三角形,再求角度的三角函数值但我们所学的三角函数值都是仅限于锐角来说的而没有学过负数角度,和0度角度,以及直角的三角函数值而我们 今天要讲的就是任意角度的三角函数值,我来为大家科普一下关于任意三角函数的概念?下面希望有你要的答案,我们一起来看看吧!
任意三角函数的概念
我们在初中的时候学过锐角的三角函数的定义:正弦(对边比斜边)、余弦(邻边比斜边)、正切(对边比邻边)。初中的三角函数是对于锐角来说的,我们首先确定一个直角三角形,再求角度的三角函数值。但我们所学的三角函数值都是仅限于锐角来说的。而没有学过负数角度,和0度角度,以及直角的三角函数值。而我们 今天要讲的就是任意角度的三角函数值。
我们先来看看任意三角函数值的定义一:
正弦和余弦的定义
正切的定义
注:任意一个角的三角函数值与它的终边上取值的点时无关的。三角函数值的定义二:设P(x,y)为角α的终边上任意一点,r=(x² y²)^½,那么
sinα=y/r, cosα=x/r,tanα=y/x,特别地,若取r等于1,那么x=cosα,y=sinα。这与我们前面给出的三角函数值的定义一是一致的。
于是从这里可以看出:
当一个角度的终边落在第一象限时,它的正弦和余弦都是正的,因为x和y都是正的。
当一个角度的终边落在第二象限时,它的余弦是负的,正弦是正的,因为x是负的,y是正的。
当一个角度的终边落在第三象限时,它的正弦和余弦都是负的,因为x和y都是负的。
当一个角度的终边落在第四象限时,它的正弦是负的,余弦是正的,因为x是正的,y是负的。
由三角函数的定义再结合我们熟记的30°、45°、60°角的三角函数值,我们可以得出很多角的三角函数值。比如说:
sin150°=1/2,cos120°=-1/2因为我们知道sin30°=1/2,而30°和150°角的终边是关于y轴对称的。所以他们终边上对应点的y一样大,于是y=sin30°=y=sin150°=1/2。而cos60=1/2,而60°和120°的终边是关于y轴对称的,所以y相同(即正弦相同),但x互为相反数(即余弦互为相反数)。(没看懂的可以看我的视频讲解)
三角函数值在各个象限的正负性