我们知道,问卷调查中没有绝对的样本量标准,不同的研究方法、研究目的,研究要求和研究资料都可决定样本量得大小。一般而言,样本越大,结果的估计越精确。但样本过大或过小均可影响研究的可行性。因此,科学地确定样本量可增加研究的可靠性,得到可信的研究结果。那么,样本量的决定因素都有哪些呢?
1、资料性质
计量资料如果设计均衡,误差控制得好,样本可以小于30例; 计数资料即使误差控制严格,设计均衡, 样本需要大一些,需要30-100例。
2、研究事件的发生率
研究事件预期结局出现的结局,事件发生率越高,所需的样本量越小,反之就要越大。
3、研究因素的有效率
有效率越高,即实验组和对照组比较数值差异越大,样本量就可以越小,小样本就可以达到统计学的显著性,反之就要越大。
4、显著性水平
即假设检验第一类(α)错误出现的概率。为假阳性错误出现的概率。α越小,所需的样本量越大,反之就要越小。α水平由研究者具情决定,通常α取0.05或0.01。
5、检验效能
检验效能又称把握度,为1-β,即假设检验第二类错误出现的概率,为假阴性错误出现的概率。即在特定的α水准下,若总体参数之间确实存在着差别,此时该次问卷能发现此差别的概率。检验效能即避免假阴性的能力,β越小,检验效能越高,所需的样本量越大,反之就要越小。β水平由研究者具情决定,通常取β为0.2,0.1或0.05。即1-β=0.8,0.1或0.95,也就是说把握度为80%,90%或95%。
6、容许的误差(δ)
如果调查均数时,则先确定样本的均数( )和总体均数(m)之间最大的误差为多少。容许误差越小,需要样本量越大。一般取总体均数(1-α)可信限的一半。
7、总体标准差(s)
一般因未知而用样本标准差s代替。
8、双侧检验与单侧检验
采用统计学检验时,当研究结果高于和低于效应指标的界限均有意义时,应该选择双侧检验,所需样本量就大; 当研究结果仅高于或低于效应指标的界限有意义时,应该选择单侧检验,所需样本量就小。当进行双侧检验或单侧检验时,其α或β的Ua界值通过查标准正态分布的分位数表即可得到。
中科易研以十余年行业积累为基础,结合互联网大数据技术,秉承“数据、信息、知识、智慧”的方法论,坚持“用数据说话、用数据决策、用数据管理、用数据创新”的理念,以自主研发获得国家发明专利的易研问卷平台和易研大数据云平台为依托,专注于为教育科研机构、政府企事业单位提供基于数据采集、数据清洗、数据检索、数据管理、数据分析和可视化、数据资源整合等全流程数据服务,并为用户提供大数据云平台搭建服务。