分子间作用力与分子的性质
区分好这三种作用力,并能够用氢键解释物质的性质(熔沸点、溶解性)
2.分子的性质
(1)分子的极性
(2)分子的溶解性
①“相似相溶”的规律:非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂。若溶剂和溶质分子之间可以形成氢键,则溶质的溶解度增大。
②随着溶质分子中憎水基个数的增大,溶质在水中的溶解度减小。如甲醇、乙醇和水以任意比互溶,而戊醇在水中的溶解度明显减小。
(3)分子的手性
①手性异构:具有完全相同的组成和原子排列的一对分子,如同左手和右手一样互为镜像,在三维空间里不能重叠的现象。
②手性分子:具有手性异构体的分子。
③手性碳原子:在有机物分子中,连有四个不同基团或原子的碳原子。含有手性碳原子的分子是手性分子。
(4)无机含氧酸分子的酸性
无机含氧酸的通式可写成(HO)mROn,如果成酸元素R相同,则n值越大,R的正电性越高,使R—O—H中O的电子向R偏移,在水分子的作用下越易电离出H+,酸性越强,如酸性:HClO<HClO2<HClO3<HClO4。
晶体和晶胞
1.晶胞计算的思维方法
晶胞计算是晶体考查的重要知识点之一,也是考查学生分析问题、解决问题能力的较好素材。晶体结构的计算常常涉及如下数据:晶体密度、NA、M、晶体体积、微粒间距离、微粒半径、夹角等,密度的表达式往往是列等式的依据。解决这类题,一是要掌握晶体“均摊法”的原理,二是要有扎实的立体几何知识,三是要熟悉常见晶体的结构特征,并能融会贯通,举一反三。
(1)“均摊法”原理
【特别提示】
①在使用均摊法计算晶胞中微粒个数时,要注意晶胞的形状,不同形状的晶胞,应先分析任意位置上的一个粒子被几个晶胞所共有,如六棱柱晶胞中,顶点、侧棱、底面上的棱、面心依次被6、3、4、2个晶胞所共有。
②在计算晶胞中粒子个数的过程中,不是任何晶胞都可用均摊法。
(2)晶体微粒与M、ρ之间的关系
若1个晶胞中含有x个微粒,则1 mol晶胞中含有Nmol 微粒,其质量为NMg(M为微粒的相对“分子”质量);1个晶胞的质量为ρa3 g(a3为晶胞的体积,ρ为晶胞的密度),则1 mol晶胞的质量为ρa3NA g,因此有NM=ρa3NA。
晶胞密度的相关计算,掌握公式以及单位的换算
常见晶体类型
离子键、共价键和金属键的比较
1.四类晶体的比较
2.离子晶体的晶格能
(1)定义
气态离子形成1 mol离子晶体释放的能量,通常取正值,单位:kJ/mol。
(2)影响因素
①离子所带电荷数:离子所带电荷数越多,晶格能越大。
②离子的半径:离子的半径越小,晶格能越大。
(3)与离子晶体性质的关系
晶格能越大,形成的离子晶体越稳定,且熔点越高,硬度越大。
3.晶体类型的5种判断方法
(1)依据构成晶体的微粒和微粒间的作用判断
①离子晶体的构成微粒是阴、阳离子,微粒间的作用是离子键。
②原子晶体的构成微粒是原子,微粒间的作用是共价键。
③分子晶体的构成微粒是分子,微粒间的作用为分子间作用力。
④金属晶体的构成微粒是金属阳离子和自由电子,微粒间的作用是金属键。
(2)依据物质的分类判断
①金属氧化物(如K2O、Na2O2等)、强碱(NaOH、KOH等)和绝大多数的盐类是离子晶体。
②大多数非金属单质(除金刚石、石墨、晶体硅等)、非金属氢化物、非金属氧化物(除SiO2外)、几乎所有的酸、绝大多数有机物(除有机盐外)是分子晶体。
③常见的单质类原子晶体有金刚石、晶体硅、晶体硼等,常见的化合类原子晶体有碳化硅、二氧化硅等。
④金属单质是金属晶体。
(3)依据晶体的熔点判断
①离子晶体的熔点较高。
②原子晶体的熔点很高。
③分子晶体的熔点低。
④金属晶体多数熔点高,但也有少数熔点相当低。
(4)依据导电性判断
①离子晶体溶于水及熔融状态时能导电。
②原子晶体一般为非导体。
③分子晶体为非导体,而分子晶体中的电解质(主要是酸和强极性非金属氢化物)溶于水,使分子内的化学键断裂形成自由移动的离子,也能导电。
④金属晶体是电的良导体。
(5)依据硬度和机械性能判断
①离子晶体硬度较大、硬而脆。
②原子晶体硬度大。
③分子晶体硬度小且较脆。
④金属晶体多数硬度大,但也有较低的,且具有延展性。
【注意事项】
(1)常温下为气态或液态的物质,其晶体应属于分子晶体(Hg除外)。
(2)石墨属于混合型晶体,但因层内原子之间碳碳共价键的键长为1.42×10-10m,比金刚石中碳碳共价键的键长(键长为1.54×10-10m)短,所以熔、沸点高于金刚石。
(3)AlCl3晶体中虽含有金属元素,但属于分子晶体,熔、沸点低(熔点190 ℃)。
(4)合金的硬度比其成分金属大,熔、沸点比其成分金属低。
4.分类比较晶体的熔、沸点
突破五类晶体模型
1.原子晶体(金刚石和二氧化硅)
(1)金刚石晶体中,每个C与另外4个C形成共价键,C—C键之间的夹角是109°28′,最小的环是六元环。含有1 mol C的金刚石中,形成的共价键有2 mol。
(2)SiO2晶体中,每个Si原子与4个O成键,每个O原子与2个硅原子成键,最小的环是十二元环,在“硅氧”四面体中,处于中心的是Si原子,1 mol SiO2中含有4 mol Si—O键。
2.分子晶体
(1)干冰晶体中,每个CO2分子周围等距且紧邻的CO2分子有12个。
(2)冰的结构模型中,每个水分子与相邻的4个水分子以氢键相连接,含1 mol H2O的冰中,最多可形成2 mol“氢键”。
3.离子晶体
(1)NaCl型:在晶体中,每个Na+同时吸引6个Cl-,每个Cl-同时吸引6个Na+,配位数为6。每个晶胞含4个Na+和4个Cl-。
(2)CsCl型:在晶体中,每个Cl-吸引8个Cs+,每个Cs+吸引8个Cl-,配位数为8。
4.石墨晶体
石墨层状晶体中,层与层之间的作用是分子间作用力,平均每个正六边形拥有的碳原子个数是2,C原子采取的杂化方式是sp2。
5.常见金属晶体的原子堆积模型
晶体结构的相关计算