作者:石兰(抄袭必究)
虽然当代的导航技术已非常成熟,但依然无法完全替代指南针的存在,它就像是一个具有磁化指示器特性的导航仪器,在过去的数千年时间里为人类指引地球上的道路。我们都知道,生活在南极的企鹅是没有指南针的,但它们却总能找到自己要走的路,并且,事实上指南针也无法给它们带来任何实质性的帮助。不要感到惊讶!因为,在向地球的磁性南北极位置靠近的时候,即使是我们手上的指南针,也会发生异乎寻常的行为指示。倘若正在打包行李的你想要和企鹅一起闲逛,即将开启一场南极之旅,那么,你要怎么做才能找到实际上的南极?
地球本身就是一个具有强大磁性的物体,它的两极分别位于和地理南极、地理北极接近的地方,而地球表面上可以自由转动的磁体,则会因为磁体特性(异性相吸、同性相斥)而指示出南北方向的所在位置。虽然,古人并不能够清晰地理解地球磁场的本质,但却发现了这样的现象、并利用这样的性能来辨别自己所处位置的方向。指南针的发明,对于人类文明和科学技术的发展而言,都起到了不可估量的作用。在古代的时候,指南针又被称为司南,主要由一根位于轴上的磁针构成的它,在大地测量和航海等领域中被广泛应用。
地球具有天然磁场,磁针在这样的环境下自由转动,并将其位置始终保持在磁子午线的切线方向之上,然后,磁针的北极指向了北磁极。虽然,我们经常使用的GPS被广泛的使用在导航、测速和定位等方面,但对于某些特殊地形,比如:当存在较大的地物遮挡无法准确导航、甚至完全无法使用的时候, GPS便不能给予我们航向的正确指引信息。因而,随着时间的递进,指南针也有了新的版本,各种电子指南针在我们的智能手机中存在,并且它也有了电子罗盘或数字罗盘这一新的名字。通常使用磁通门和磁阻传感器加工而成的电子罗盘,同样也是利用地磁场来定义北极的位置。
由于地球的自转活动,以及地核中富含铁的流体的晃动,从而产生了地球的磁场。这也是为什么会流体运动方式和速度的变化,会导致地球的磁场和磁极发生改变。虽然,地球地理上的南北极,所标记的是其旋转中心轴的相对两端,但由于地球磁性南北极的位置,并不是某个固定的点,因而,它们与地理上的南北极之间可能存在数千公里的距离差距。就指南针的设计而言,它的磁性针头的北端会指向地球的磁性北极,而它的另一端则指向了地球的磁性南极。
虽然,指南针在落下时将与我们站立时的磁场线相平行,但是,由于地球的磁场线在从北极到南极的时候,并不是呈现出沿着直线排列的方式。当我们向着地球的磁性南极靠近时,磁力线的分布将会弯曲,并直接进入了与地球表面垂直的磁性南极。也就是说,一旦我们达到这样的特殊位置,此时的指南针无法给予水平指向,而是直接指向了地球。此时,想要通过常见的指南针来指引方向已然行不通。
但是,我们可以携带一种特殊的指南针访问南极,它所拥有的自由浮动的指针,可以在三个方向上进行移动,其指针的“南端”会在你到达磁性南极的时候指向下方。同理,在地球的磁性北极,指南针针头的北端也会试图直至地面。因而,对于在极地探险的人们而言,他们往往会通过绘制太阳角或恒星位置的方式,从而计算出正北位置的所在。事实上,指南针提供的最准确读数应该是在赤道上,因为,此时地球的所有磁场线都处于水平状态,且都与地球的表面平行。
地球的地理和磁极处于彼此相对的位置,比如,位于地球地理北极附近的是其磁性南极,这便是为什么当我们通过指南针确定位置的时候,它的指针会在北半球的时候指向磁性南极,并在位于南半球时指向磁性北极。与此同时,地球的磁极并不是固定不变的,磁场可能由于受到了流动金属岩浆的影响,而呈现出了不稳定的特征。比如,磁性北极每年的平均移动距离,就达到了大约在55公里左右。并且,这样的电磁异常并不是某个区域的特性,而是广泛的存在于世界各地,比如,位于地球液态外核边界附近地幔中的密集部分,导致了南部非洲的磁场扰动了类似于溪流中的涡流。
在已经过去的这30亿年中,地球的两极一直在发生变化,甚至达到了数以百计的彻底扭转次数,而最近一次的完全逆转则大约发生在78万年前。而这一系列变化,科学家们都从地质记录中找到了证据,包含了地球磁场逆转和位移的完整演变过程。在凝固之前的熔融岩石中,从与磁场对齐的金属被发现,到沉积在沉积岩层中的磁性金属,地球的所有动态变化过程,都通过不同地质时间内产生的新岩石记录了下来。随着上升到地表的熔岩融化,那些悬浮于熔岩中的铁颗粒,开始让自己转向地球磁场的方向,并在熔岩凝固后将金属沉积物的位置锁定,于是,这些地球磁场逆转和变化的信息被记录了下来。